publications

default-cover
AccueilPublicationsMechanics of Anteroposterior Axis Formation in Vertebrates

Mechanics of Anteroposterior Axis Formation in Vertebrates

Auteurs :Alessandro Mongera , Michaut Arthur, Guillot Charlene, Xiong Fengzhu, and Pourquié Olivier

Abstract
The vertebrate anteroposterior axis forms through elongation of multiple tissues during embryogenesis. This process is based on tissue-autonomous mechanisms of force generation and intertissue mechanical coupling whose failure leads to severe developmental anomalies such as body truncation and spina bifida. Similar to other morphogenetic modules, anteroposterior body extension requires both the rearrangement of existing materials—such as cells and extracellular matrix—and the local addition of new materials, i.e., anisotropic growth, through cell proliferation, cell growth, and matrix deposition. Numerous signaling pathways coordinate body axis formation via regulation of cell behavior during tissue rearrangements and/or volumetric growth. From a physical perspective, morphogenesis depends on both cell-generated forces and tissue material properties. As the spatiotemporal variation of these mechanical parameters has recently been explored in the context of vertebrate body elongation, the study of this process is likely to shed light on the cross talk between signaling and mechanics during morphogenesis. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 35 is October 7, 2019. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

dans Annu Rev Cell Dev Biol - pp 259–283

logo-europe
logo-region-auvergne
logo-cnrs
logo-uca
logo-inserm
iGReD
Votre navigateur est obsolète

Pour profiter du site,
merci de mettre à jour votre navigateur